
2015-3044
22nd AIAA Computational Fluid Dynamics Conference, June 24, 2014, Dallas, TX

General element shapes within a tensor-product

higher-order space-time discontinuous-Galerkin

formulation

Laslo T. Diosady∗and Scott M. Murman†

NASA Ames Research Center, Moffett Field, CA, USA

A tensor-product higher-order space-time discontinuous-Galerkin method is extended to
unstructured element shapes. The use of a tensor-product formulation is key to maintain-
ing efficiency at high polynomial orders. The discrete system of equations arising at each
space-time slab is solved using a Jacobian-free Newton-Krylov scheme. An alternating-
direction-implicit (ADI) preconditioner for hexahedra is extended to prisms, pyramids and
tetrahedra by solving on the tensor-product space corresponding to the quadrature points
on the reference cube. Numerical results demonstrate the ADI preconditioner is able to
reduce the stiffness associated with high polynomial orders for a scalar advection prob-
lem. A diagonalized variant of the ADI preconditioner for the compressible Navier-Stokes
equations is used to perform simulations of the Taylor-Green vortex problem. Numerical
results demonstrate the efficiency of higher-order methods for the simulation of compress-
ible turbulent flows.

I. Introduction

Higher-order methods show potential for simulations requiring high spatial and temporal resolution,
allowing for solutions with fewer degrees of freedom and lower computational cost to achieve the same error
level as traditional second-order CFD methods.1 In this work, we use a space-time discontinuous-Galerkin
(DG) finite-element method, which extends to arbitrary order of accuracy in both space and time. Higher-
order DG methods have been widely used for the solution of the compressible Euler and Navier-Stokes
equations.2–5 These methods are particularly attractive due to the possibility of using local h- and p-
adaptation. In particular, the use of a space-time formulation allows for local adaptation in both the spatial
and temporal directions, potentially leading to a significant reduction in cost as the increased resolution in
time is only applied where necessary.

In our previous work6–9 we have presented an efficient entropy-stable space-time discontinuous Galerkin
method for the direct numerical simulation of compressible turbulent flows. The development of this nu-
merical method has relied heavily upon a tensor-product formulation in order to maintain efficiency at high
polynomial order. Thus, we have initially considered a formulation involving hexahedral elements. This
limits the meshing flexibility of our tool when considering complex geometry. The use of more general
element shapes (hexahedra, triangular prisms, pyramids and tetrahedra) allows for simulations of more com-
plicated geometries. In this work we extend our hexahedral formulation to prisms, pyramids and tetrahedral
elements. We envision a grid topology with predominantly hexahedral elements, with a small number of
prisms, pyramids and tetrahedra. However, even with a relatively small number of non-hexahedral elements
a tensor-product formulation is still necessary in order to maintain efficiency at high polynomial order.

In this work follow the unstructured spectral-element formulation of Karniadakis and Sherwin,10 which
has previously been applied to turbulent flow simulations.10–12 However, unlike this previous work which
used explicit time-stepping, our space-time discontinuous-Galerkin scheme requires the solution of a globally
coupled system of equations for each space-time slab. As higher-order methods have increased stiffness

∗Science and Technology Corp, laslo.diosady@nasa.gov
†Scott.M.Murman@nasa.gov

1 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

relative to traditional second-order methods, efficient preconditioning techniques are required to solve this
system of equations. In our previous work we have presented preconditioners which take advantage of the
tensor-product formulation on hexahedral elements enabling us to overcome the increased stiffness associated
with high-order.8 In this paper we consider extensions of these preconditioners to prisms, pyramids and
tetrahedra. Numerical results demonstrate that the resulting convergence rates are independent of solution
order for a fixed number of degrees of freedom.

This paper is organized as follows. In Section II we present our numerical method including the tensor-
product bases employed on the unstructured grid and efficient evaluation using the sum-factorization ap-
proach. Section III presents an alternating direction implicit (ADI) preconditioner for a scalar advection
equation which takes advantage of our tensor-product formulation. Section IV presents the extension of the
ADI preconditioner for the solution of the compressible Navier-Stokes equations. In Section V we apply our
numerical method to the solution of compressible flows. Finally, we provide a summary and conclusions in
Section VI.

II. Numerical Method

The compressible Navier-Stokes equations are written in conservative form as:

u,t +∇ · (f I − fV) = 0 (1)

where (·),t denotes partial differentiation with respect to time. The conservative state vector is

u =

 ρ

ρV

ρE

 , (2)

where ρ is the density, V is the velocity, and E the total energy. The inviscid and viscous fluxes are given,
respectively, by:

f I =

 ρV

ρV V T + pI

ρV H

 , and fV =

 0

τ

τV − κT∇T

 , (3)

where p is the static pressure, H = E+ p
ρ is the total enthalpy, τ the viscous stress tensor, κT is the thermal

conductivity, T = p/ρR is the temperature, and R is the gas constant. The pressure is given by:

p = (γ − 1)
(
ρE − 1

2ρV
2
)
, (4)

where γ is the specific heat ratio. The viscous stress tensor, τ , is given by:

τ = µ
(
∇V +∇V T

)
− λ(∇ · V)I (5)

where µ is the viscosity, λ = 2
3µ is the bulk viscosity.

Applying a change of variables u = u(v), where v are the entropy variables:

v =

 −
s

γ−1 + γ+1
γ−1 + ρE

p
ρV
p

−ρp

 (6)

we rewrite the Navier-Stokes equations as:

A0v,t + Ā∇v −∇ · (¯̄K∇v) = 0 (7)

with symmetric A0 = u,v, Ā = f I,uA0 = f I,v and ¯̄K = fV,∇uA0 = fV,∇v.13

We proceed to discretize (7) as follows. The domain, Ω, is partitioned into non-overlapping elements, κ,
while the time is partitioned into intervals (time-slabs), In = [tn, tn+1]. Define Vh =

{
w,w|κ×I ∈ [P(κ× I)]Rank

}
,

2 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

the space-time finite-element space consisting of piece-wise polynomial functions in both space and time on
each element, where Rank = 5 is the number of conservation equations. We seek a solution v ∈ Vh such
that the weak form:

r(w,v) =
∑
κ

{∫
I

∫
κ

−
(
w,t · u+∇w · (f I − fV)

)
+

∫
I

∫
∂κ

w · (f̂ I · n− f̂V · n)

+

∫
κ

w(tn+1
−) · u(tn+1

−)−w(tn+) · u(tn−)

}
= 0 (8)

is satisfied for all w ∈ Vh, where u = u(v) as given above. Here f̂ I · n and f̂V · n denote numerical flux
functions approximating the inviscid and viscous fluxes, respectively, while n is the outward pointing normal
vector. In this work, the inviscid flux is discretized using the method of Ismail and Roe,14 while the viscous
flux is discretized using an interior penalty method.

We use a tensor-product basis such that on each element v is given by

v(x(η), t(τ)) = vijklΦijkl (9)

where Φijkl are the set of basis functions which are orthogonal on the reference element, while vijkl are the
coefficients. We use a combination of Lagrange and Dubiner basis functions:10

Φhexijkl = φi(η1)φj(η2)φk(η3)φl(τ) 0 ≤ i, j, k, l < N (10)

Φprismijkl = ψbij(η1)ψaj (η2)φk(η3)φl(τ) 0 ≤ i+ j < N, 0 ≤ k, l < N (11)

Φpyramidijkl = ψcijk(η1)ψaj (η2)ψak(η3)φl(τ) 0 ≤ i+ max(j, k) < N, 0 ≤ l < N (12)

Φtetijkl = ψcijk(η1)ψbjk(η2)ψak(η3)φl(τ) 0 ≤ i+ j + k < N, 0 ≤ l < N (13)

where x(η) defines a mapping from a reference cube, η ⊂ [−1, 1]3, to physical space, while t(τ) is the mapping
from the reference interval [−1, 1] to the time interval [tn, tn+1]. Here, N is the solution order, φi are one-
dimensional Lagrange basis functions defined at Gauss-Legendre points, while the Dubiner basis functions
ψak , ψbjk and ψcijk are given by:

ψak(η) = P 0,0
k (η) ψbjk(η) =

(
1−η

2

)k
P 2k+1,0
j (η) ψcijk(η) =

(
1−η

2

)j+k
P 2j+2k+1,0
i (η) (14)

where Pα,βp denotes the pth-order Jacobi polynomial.10 We note that for the hexahedral elements, the
coefficients vijkl correspond to nodal values, while this is not generally the case for the other element types,
where modal bases are used.

The integrals in (8) are evaluated using numerical quadrature. For example:

2

∆t

∫
I

∫
κ

−
(
w,t · u+∇w · (f I − fV))

)
'

{
−
(
τ,tw,τ · u+∇ηw · (f̃

I
− f̃

V
))
)
|x,η|

}
ηpηqηrτs

wpwqwrws (15)

where ηp, ηq, ηr, τs are one-dimensional Gauss-Jacobi quadrature points, and wp, wq, wr and wt are the
associated quadrature weights. |x,η| denotes the Jacobian of the mapping from element reference cube to

physical space, ∇η denotes differentiation with respect to the reference coordinate η, while f̃
I

= η,xf
I and

f̃
V

= η,xf
V are the fluxes mapped to the local element coordinate system. In this work we use a quadrature

rule with twice as many quadrature points as nodal points in order to reduce the quadrature error (we ensure
exact integration of cubic nonlinearities) thereby improving the nonlinear stability of our scheme.6,12

The remaining integrals appearing in (8) are evaluated in a similar manner, which may be described as
a sequence of three steps:

1. Evaluate the state (v) and gradient (∇ηv) at the quadrature points.

3 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

2. Evaluate the fluxes (f̃
I

and f̃
V

) at the quadrature points.

3. Multiply the fluxes with the basis functions (w) or gradients (∇ηw).

A key requirement for efficiency at high polynomial order is the evaluation of the first and third steps using
the sum-factorization approach,6,15 which allows the multiplication of the basis functions to be performed
as a sequence of one-dimensional operations. For example the evaluation of the state at a quadrature point
in a tetrahedron may be written as:

vpqrs =
∑
ijkl

Φijkl|pqrsvijkl (16)

=
∑
l

∑
k

∑
j

∑
i

φl|sψk|rψjk|qψijk|pvijkl (17)

=
∑
l

φl|s

∑
k

ψk|r

∑
j

ψjk|q

(∑
i

ψijk|pvijkl

) (18)

A similar operation may be performed when multiplying by the basis functions in order to form the residual.
This results in a residual evaluation cost which scales as O(Nd+1) for each space-time element where N is
the solution order while d is the number of spatial-temporal dimensions (for unsteady 3D simulations d = 4).
Thus, for a fixed number of spatial-temporal degrees of freedom the residual evaluation scales linearly with
the solution order. However, for moderate solution orders, N = 4 − 16, we can offset this linear scaling by
using optimized numerical kernels.6

In our hexahedral formulation we have made use of further simplifications in order to increase the efficiency
of our numerical scheme. While we compute the residual using a rule with twice the number of quadrature
points as solution points, we employ a lower order quadrature rule when computing the linearized residual in
our solution procedure. In particular we evaluate the linearized residual using a quadrature rule of the same
order as the solution. As we have noted previously, the basis function coefficients for hexahedral elements
correspond to the nodal values at the Gauss-Legendre points. Thus, for evaluating the linearized residual
we employ a collocated quadrature rule, where the nodal points are used as quadrature points. When using
a collocated quadrature rule, the solution value at the nodes is directly available, while the gradient of the
solution may be obtained using a summation in only a single coordinate direction. Namely:

∂v

∂η1

∣∣∣∣
pjkl

=
∑
i

∂φi
∂η1

∣∣∣∣
p

vijkl
∂v

∂η2

∣∣∣∣
iqkl

=
∑
j

∂φj
∂η1

∣∣∣∣
q

vijkl (19)

∂v

∂η3

∣∣∣∣
ijrl

=
∑
k

∂φk
∂η1

∣∣∣∣
r

vijkl
∂v

∂τ

∣∣∣∣
ijks

=
∑
l

∂φl
∂τ

∣∣∣∣
s

vijkl (20)

This reduces the number of operations to evaluate the state at the quadrature points by a factor of approx-
imately 5 relative to a naive approach. For prisms, pyramids, and tetrahedra the coefficients vijkl no longer
correspond to nodal values. Thus, evaluating the nodal values for a quadrature rule with the same order as
the solution generally involves the coefficients of all basis functions corresponding to the same time level (we
still take advantage of a collocated rule in the temporal direction). The nodal values are evaluated as given
by:

v|pqrl =
∑
k

ψk|r

∑
j

ψjk|q

(∑
i

ψijk|pvijkl

) (21)

The derivative of the basis functions with respect to ηi take on a similar form, while the derivative with respect
to τ also involves a sum over the temporal direction. Thus, evaluating the basis functions and derivatives at
all quadrature points for pyramids and tetrahedra is approximately 1.5 times the number of operations as
compared with a collocated quadrature approach on the hexahedra. For prisms, a nodal basis is used in the
directions which are not collapsed, thus a collocated quadrature rule may be used in these directions, leading
to an operation count that is also roughly 1.5 times that as compared with hexahedra. These estimates are
verified by numerical experiments. The CPU time to perform gradient and state evaluations for the different

4 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

element shapes normalized by the CPU time for a hexahedron are presented in Figure 1. The CPU time is
somewhat larger than that predicted by the analysis which may be due to improved cache efficiency on the
hexahedra relative to the other element shapes.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

N

N
or

m
al

iz
ed

 T
im

e

Hex
Prism
Pyramid
Tet

Figure 1. CPU time for state evaluation at “collocated” quadrature points on an element, normalized by CPU time
for a hexahedron.

Next we consider the evaluation of the state and its gradient on the faces of elements, required for the
integrals on the second line of (8). On the hexahedra, it is convenient to consider this as a sequence of two
operations:

1. Evaluate the state and normal gradients at a set of nodal points on the element face.

2. Evaluate the state and gradient at the face quadrature points based on the face nodal points.

When performing parallel simulations, communication between processors sharing an element face involves
only face nodal and normal gradient values as opposed to either entire element data or face quadrature point
data, thereby minimizing the total amount of communication. Specifically, evaluation of the face nodal and
normal gradient values involves only a simple sum in the direction normal to a face:

v|±jkl =
∑
i

φi|±1vijkl v|i±kl =
∑
j φj |±1vijkl v|ij±l =

∑
k

φk|±1vijkl (22)

∂v

∂η1

∣∣∣∣
±jkl

=
∑
i

∂φi
∂η1

∣∣∣∣
±1

vijkl
∂v
∂η1

∣∣∣
i±kl

=
∑
j
∂φj
∂η2

∣∣∣
±1

vijkl
∂v

∂η1

∣∣∣∣
ij±l

=
∑
k

∂φk
∂η3

∣∣∣∣
±1

vijkl (23)

The operation count for the evaluation of the face nodal values scales as O(Nd), while evaluating the state
at the face quadrature points using the face nodal values involves a sum factorization of dimension d − 1,
again leading to a cost which scales as O(Nd).

We wish to follow a similar procedure as outlined above for evaluating the state and gradient on faces of
prisms, pyramids, and tetrahedra. In particular, we will evaluate the state and normal gradients on a set of
nodal points on the (potentially collapsed) reference quadrilateral corresponding to each face. Then we use
these nodal values to compute the state and gradient at the face quadrature points. We note that the basis
functions are polynomial in the space of the reference quadrilateral, whether or not the face corresponds to a
triangular or quadrilateral surface. The polynomial space corresponding to the element basis projected onto
the face is a subset of the space spanned by the tensor product of Lagrange polynomials on the reference
quadrilateral. Thus, the sum factorization approach identical to that used for the faces of the hexahedra
may be used once the solution is available at nodal points on the face. It remains to evaluate the solution
at the face nodal points given the solution coefficients.

As mentioned previously, the evaluation of the solution at nodal points on prisms, pyramids, and tetra-

5 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

hedra generally involves all solution points. We evaluate the solution on the faces of a tetrahedron as:

v|−qrl =
∑
k

ψk|r

∑
j

ψjk|q

(∑
i

ψijk|−vijkl

) (24)

v|p−rl =
∑
k

ψk|r

∑
j

ψjk|−

(∑
i

ψijk|pvijkl

) (25)

v|pq±l =
∑
k

ψk|±

∑
j

ψjk|q

(∑
i

ψijk|pvijkl

) (26)

where the four faces of the tetrahedron correspond to η1 = −1, η2 = −1, η3 = −1 and η3 = +1. The
evaluation of the face nodal values scales as O(N3) for the face η1 = −1, which is similar to that for the faces
of the hexahedron. However, for the remaining faces of the tetrahedron the cost scales as O(N4) since the
innermost sum involves all degrees of freedom. This implies that the cost of the face evaluation will be more
significant for tetrahedra than for hexahedra. A similar situation also occurs with the faces of the pyramids
and prisms.

Once again we perform numerical simulations to confirm the behavior of this analysis. Figure 2 shows the
cost of evaluating the state and normal gradient at the face nodal points of hexahedra, prisms, pyramids, and
tetrahedra. For each element shape we compute the minimum and maximum CPU time over the different
faces (normalized by the average CPU time for the face of a hexahedron). We note that for the hexahedron
the mininum and maximum CPU time vary by about a factor of two, where the variation is due to slightly
improved cache efficiency for particular faces. For the other element shapes, the minimum CPU time relative
to the hexahedron is roughly constant, while the maximum increases linearly with solution order as expected
by the analysis.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

N

N
or

m
al

iz
ed

 T
im

e

Hex
Prism
Pyramid
Tet

Figure 2. CPU time for state evaluation at face nodal points, normalized by average CPU time for a hexahedron.
(Dashed line corresponds to most expensive face, while solid line corresponds to least expensive face.)

III. Preconditioning: Scalar-Advection

Equation (8) represents a globally coupled system of nonlinear equations which need to be solved for
each time-slab. In this work we use a Jacobian-free Newton-Krylov method describe in detail in our previous
papers.6,8 Preconditioning is necessary to overcome the increased stiffness associated with high-order. In our
previous work, we have develop preconditioners with memory requirements no larger than that required for
residual evaluations. In particular, we develop element-wise block-Jacobi preconditioners where the elemental
blocks are solved approximately, taking advantage of the tensor-product formulation of our finite-element
scheme. We employ either of two preconditioners: an Alternating-Direction-Implicit (ADI)16 preconditioner
or a preconditioner based on the Fast Diagonalization Method (FDM).17 These preconditioners cannot be
directly applied for prism, pyramids, and must be extended to handle these element types.

6 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

We describe the formulation of our preconditioners by considering a steady constant-coefficient linear
advection problem in two dimensions:

a · ∇v = f (27)

where v is the conserved scalar, a is a divergence-free velocity field, and f is a forcing term.
Applying our discontinuous-Galerkin discretization using an upwind-flux we obtain an elemental block

Jacobian which corresponds to the following operator:

r(w|κ, v|κ) = −
∫
κ

(∇w · av) +

∫
∂κ

a+
nwv (28)

where an = a · n, a±n = 1
2 (an ± |an|), and ∇n denotes differentiation in the normal direction. Mapping the

physical element to the reference square, the elemental block Jacobian for a single element may be written
as:

r(w|κ, v|κ) = +

∫
η2

(
−
∫
η1

(|x,η|ã1w,η1v) +
[
|x,η|ã+

1 wv
]η1=1

η1=−1

)
+

∫
η1

(
−
∫
η2

(|x,η|ã2w,η2v) +
[
|x,η|ã+

2 wv
]η2=1

η2=−1

)
(29)

where ãi = ηi,xjaj , ã
+
i =

{
1
2 (ãi + |ãi|) if ηi = 1 and 1

2 (ãi − |ãi|) if ηi = −1
}

and |x,η| is the Jacobian of the
mapping from the reference square to the physical element. It is convenient to factor the Jacobian of the
mapping, |x,η|, into two terms |x,η| = |x,ξ||ξ,η|, where ξ are the reference coordinates in the element (as
opposed to the reference square). Assuming the mapping, x(ξ), from the reference element to the physical
space is constant the elemental block Jacobian may be written as:

1

|xξ|
r(w|κ, v|κ) = +

∫
η2

(
−
∫
η1

(|ξ,η|η1,ξk ākw,η1v) +
[
|ξ,η|(η1,ξk āk)+wv

]η1=1

η1=−1

)
+

∫
η1

(
−
∫
η2

(|ξ,η|η2,ξk ākw,η2v) +
[
|ξ,η|(η2,ξk āk)+wv

]η2=1

η2=−1

)
(30)

where āi = ξi,xjaj , and also ãi = ηi,ξj āj . We note that āi are constant on an element, while ãi depend
upon the mapping from the reference square to the reference element. For quadrilateral elements (or for
hexahedral elements in 3D) ξ,η is the identity matrix and āi = ãi.

We first consider only quadrilateral elements. We recognize that each line on the right-hand side of (29)
corresponds to an advection operator along an axis of our reference element. Employing the tensor-product
basis, v = v1(η1)v2(η2), w = w1(η1)w2(η2) the elemental block Jacobian is rewritten conveniently as:

1

|xξ|
r(w|κ, v|κ) = +

(
−
∫
η1

(|ξ,η|η1,ξk ākw1,η1v1) +
[
|ξ,η|(η1,ξk āk)+w1v1

]η1=1

η1=−1

)∫
η2

w2v2

+

∫
η1

w1v1

(
−
∫
η2

(|ξ,η|η2,ξk ākw2,η2v2) +
[
|ξ,η|(η2,ξk āk)+w2v2

]η2=1

η2=−1

)
, (31)

which corresponds to the discrete system:

Aquadκ = |xξ| ((D1 ⊗M2) + (M1 ⊗D2)) (32)

where Mi are one-dimensional mass matrices, whose [m,n] entry is given by:

Mi[m,n] =

∫
ηi

wivi (33)

while Di are one-dimensional advection operators:

Di[m,n] = −
∫
ηi

(āiwi,ηivi) +
[
ā+
i wivi

]ηi=1

ηi=−1
(34)

7 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

where vi and wi correspond, respectively, to m and n. Factoring out the elemental mass matrix gives:

Aquadκ = |xξ|(M1 ⊗M2){(D̃1 ⊗ I) + (I ⊗ D̃2)} (35)

where D̃i = M−1
i Di while I denotes the identity matrix. We seek to efficiently compute an inverse of Aquadκ .

We note that the term Mκ ≡ |xξ|(M1 ⊗M2) appearing in (35) is simply the elemental mass matrix, which
is diagonal and thus easily inverted. It remains to invert the matrix:

(D̃1 ⊗ I) + (I ⊗ D̃2) (36)

We have previously developed an alternating direction implicit (ADI) preconditioner and a preconditioner
based on the fast-diagonalization method (FDM) to approximately invert (36). These preconditioners take
advantage of the fact that (36) is in separable form. When developing preconditioners for general element
shapes, we wish to form similar tensor-product systems. We consider first the triangular element and then
present a generalization for three-dimensional elements.

ξ1

ξ2

η(ξ)

ξ(η)

η1

η2

Figure 3. Mapping from reference triangle to reference square

Figure 3 depicts the mapping from the reference triangle to the reference square. Specifically, the mapping
is given by:

ηξ =

[
1 0

1+η2
1−η1

2
1−η1

]
and |ξη| = 1−η1

2 (37)

where we note that the mapping is singular at the collapsed corner of the triangle corresponding to ξ1 =
η1 = 1. The elemental block Jacobian is given by:

1
|xξ|r(w|κ, v|κ) = +

∫
η2

(
−
∫
η1

(
1−η1

2 ā1w,η1v
)

+
[

1−η1
2 ā+

1 wv
]
η1=−1

)
+

∫
η1

(
−
∫
η2

((
1+η2

2 ā1 + ā2

)
w,η2v

)
+
[
(1+η2

2 ā1 + ā2)+wv
]η2=1

η2=−1

)
(38)

As in the case of the quadrilateral, we recognize that each line in (38) corresponds to the discretization of an
advection problem along a coordinate direction of the reference square. However, in the triangular case, the
coefficient is spatially varying. We consider a basis formed by the tensor-product of Lagrange polynomials
defined at the Gauss-Jacobi quadrature points on the reference quadrilateral. Unfortunately, the space
defined by this basis includes functions which, when mapped to the reference triangle, are multi-valued at
the corner of the triangle corresponding to the collapsed edge (η1 = 1) of the quadrilateral. In particular, the
space spanned by the Dubiner basis is a subset of this tensor-product space, constrained to ensure that all
functions are polynomial on the triangle and single-valued at the collapsed edge. Our preconditioner for the
triangle will be based on solving a local problem in the artificially constructed tensor-product space using
our previously developed preconditioners, then restricting the solution to the space spanned by the Dubiner
basis.

Consider the tensor-product space where v = v1(η1)v2(η2) and w = w1(η1)w2(η2). Since the polynomial
space spanned by the Dubiner basis is a subspace of this artificially constructed tensor-product space, the
mass-matrix and elemental block-Jacobian for the triangle may be recovered by a simple Galerkin projection:

M tri
κ = ΦTM tri

κ† Φ and Atriκ = ΦTAtriκ† Φ (39)

8 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

where M tri
κ† is the diagonal matrix of quadrature weights (scaled by the Jacobian of the mapping from

reference to physical space), Atriκ† is the discrete system corresponding to (38) with the tensor-product basis,
while Φ is the matrix of the Dubiner basis functions evaluated at the quadrature points. The matrix
operations in (39) may be viewed simply as a restatement of the quadrature formula used to evaluate M tri

κ

and Atriκ . In particular, M tri
κ† has the form:

M tri
κ† = |xξ|(M1† ⊗M2) (40)

where

M1† [m,n] =

∫ 1

η1=−1

1−ξ1
2 w1v1 (41)

Note that M1† and M2 can be evaluated exactly using a Gauss-Jacobi quadrature which exactly integrates∫ 1

−1
(1 − η)αf(η) for polynomials functions f(η) up to order 2N + 1. In particular we use a Gauss-Jacobi

quadrature rule with α = 1 in the η1-direction and α = 0 in the η2-direction. M1† and M2 thus correspond
to diagonal matrices with diagonals given by the Gauss-Jacobi quadrature weights.

Similarly, Atriκ† has the form:

Ãtriκ† = |xξ| ((D1† ⊗M2) + (N1† ⊗D2)) (42)

where

D1† [m,n] = −
∫
η1

(
1−η1

2 ā1w1,η1v1

)
+
[

1−η1
2 ā+

1 w1v1

]
η1=−1

(43)

D2[m,n] = −
∫
η2

((
1+η2

2 ā1 + ā2

)
w2,η2v2

)
+
[
(1+η2

2 ā1 + ā2)+w2v2

]η2=1

η2=−1
(44)

N1† [m,n] =

∫ 1

η1=−1

w1v1 (45)

Once again, we can evaluate the integrals appearing in (45) discretely using the same Gauss-Jacobi quadra-
ture rules. In this case, the quadrature rule is not exact for N1† , however we recover an approximation Ãtriκ†
which exposes the tensor-product formulation:

Ãtriκ† = |xξ|(M1† ⊗M2)
(

(D̃1† ⊗ I) + (G1† ⊗ D̃2)
)

(46)

where G1† = M−1
1†
N1† is simply a diagonal matrix with diagonal entries given by 2

1−ξ1 evaluated at each

quadrature point. In particular, we can write Atriκ as:

Atriκ = ΦT Ãtriκ† Φ + Etriκ = Ãtriκ + Etriκ (47)

where Ãtriκ ≡ ΦT Ãtriκ† Φ corresponds to the evaluation using a Gauss-Jacobi quadrature rule with α = 1 on
the edges corresponding to η2 = −1 and η2 = 1, while Etriκ is the correction corresponding to evaluating
these integrals exactly using a quadrature rule with α = 0. We note that the error term Etriκ is a simple

rank-1 matrix of the form Etriκ = e1e
T
2 . Thus if we can efficiently compute (or apply) Ãtri

−1

κ then we can

compute (or apply) Atri
−1

κ efficiently using the Sherman-Morrison formula:

Atri
−1

κ =

(
I − Ãtri

−1

κ e1e
T
2

1+eT2 Ã
tri−1
κ e1

)
Ãtri

−1

κ (48)

We now propose to develop a preconditioner for Ãtriκ = Φ+Ãtriκ† Φ of the form:

Ãtri
−1

κ ≈ Φ+Ãtri
−1

κ† Φ+T (49)

where Φ+ ≡ M tri−1

κ ΦTM tri
κ† is a weighted pseudo-inverse of Φ, corresponding to the discrete L2 projection

operator from the artificially constructed tensor-product space to the polynomial space on the triangle. We

note that the action of Φ+ and Φ+T can be efficiently computed using the sum-factorization approach.

9 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

The design of our preconditioner is founded on the principle that the tensor-product form of Ãtriκ† makes

computing its inverse (or an approximation thereof) simpler than computing the inverse of Ãtriκ .
We write:

Ãtriκ† = |xξ|(M1† ⊗M2)(G1† ⊗ I)
(

(G−1
1†
D̃1† ⊗ I) + (I ⊗ D̃2)

)
(50)

As discussed previously, the first term |xξ|(M1† ⊗M2) is simply the diagonal matrix of quadrature weights
and can easily be inverted. Similarly, (G1† ⊗ I) is a diagonal matrix which is easily inverted. The third
matrix on the right-hand side of (50) is in separable tensor-product form such that we can now apply our
fast-diagonalization method (FDM) or alternating-direction-implicit (ADI) schemes.

We first consider the case where Ãtriκ† is inverted exactly and examine the performance of the proposed

preconditioner P tri
−1

FDM1
= Φ+T Ãtri

−1

κ† Φ+. Application of this preconditioner may be performed efficiently
using the sum-factorization approach and the fast-diagonalization method. We evaluate the performance

by examining the eigenvalue spectrum of the preconditioned operator
(
P tri

−1

κ Atriκ − I
)

as a function of θ,

the angle of the flow relative to a reference equilateral triangle. We define our coordinate system such that
θ = 0 corresponds to flow into this reference element in a direction normal to the edge opposite the collapsed
node. In Figure 4 we present the spectral radius of the preconditioned operator, the number of non-zero
eigenvalues and the number of eigenvalues with magnitude greater than 1. As can be observed in Figure 4
the proposed preconditioner is unstable when the flow is towards the corner corresponding to the collapsed
edge, with the largest eigenvalue approching N/2. However, we note that the majority of the eigenvalues
of the preconditioned operator are identically zero, with either N or N − 1 non-zero eigenvalues depending
upon the angle of the flow. Additionally, for N ≤ 16 there is only a single unstable eigenvalue, suggesting
that we can apply a rank-1 perturbation to recover a stable preconditioner.

3
0 90 180 270 360

;
(P

F
M

D
1

-1
A

-I
)

0

1

2

3

4

5

6

7

8
N = 2
N = 4
N = 8
N = 12
N = 16

(a) Spectral Radius

3
0 90 180 270 360

N
um

be
r

of
 n

on
ze

ro
 e

ig
en

va
lu

es

0

2

4

6

8

10

12

14

16
N = 2
N = 4
N = 8
N = 12
N = 16

(b) Nonzero Eigenvalues

3
0 90 180 270 360

N
um

be
r

of
 u

ns
ta

bl
e

ei
ge

nv
al

ue
s

-0.5

0

0.5

1

1.5

2

2.5
N = 2
N = 4
N = 8
N = 12
N = 16

(c) Unstable Eigenvalues

Figure 4. Spectral radius of
(
P tri

−1

FDM1
Atriκ − I

)

We next consider the preconditioner:

P tri
−1

FDM2
=

(
I − P tri

−1

FDM1
e1e

T
2

1+eT2 P
tri−1
FDM1

e1

)
P tri

−1

FDM1
(51)

which corresponds to the application of the Sherman-Morrison formula to correct for the inexact quadrature
on the edges adjacent to the collapsed corner (though in this case Ãtri

−1

κ is replaced by our first preconditioner

P tri
−1

FDM1
). In Figure 5 we show the spectral radius and the number of non-zero eigenvalues, corresponding

to this preconditioner. As desired, we recover a stable preconditioner for N ≤ 12. Unfortunately, when
the flow is into one of the edges next to the collapsed corner, the performance degrades significantly with
increasing solution order and the preconditioner becomes unstable for N = 16. We note that the rank-1
perturbation applied does not, in general, correspond exactly to the largest eigenvalues of the preconditioned
operator P tri

−1

FDM1
Atriκ − I, and different rank-1 perturbations may be more successful. Alternatively, we could

consider a rank-N perturbation which would result in an exact preconditioner. At this stage we have not
explored further variants of a preconditioner based on the fast-diagonalization method for unstructured
element shapes, however these preliminary results suggest that it may be possible to develop an efficient
tensor product preconditioner by inverting Ãtriκ† .

10 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

3
0 90 180 270 360

;
(P

F
M

D
2

-1
A

-I
)

0

0.2

0.4

0.6

0.8

1

1.2
N = 2
N = 4
N = 8
N = 12
N = 16

(a) Spectral Radius

3
0 90 180 270 360

N
um

be
r

of
 n

on
ze

ro
 e

ig
en

va
lu

es

0

2

4

6

8

10

12

14

16
N = 2
N = 4
N = 8
N = 12
N = 16

(b) Nonzero Eigenvalues

3
0 90 180 270 360

N
um

be
r

of
 u

ns
ta

bl
e

ei
ge

nv
al

ue
s

-0.5

0

0.5

1

1.5

2

2.5
N = 2
N = 4
N = 8
N = 12
N = 16

(c) Unstable Eigenvalues

Figure 5. Spectral radius of
(
P tri

−1

FDM2
Atriκ − I

)

Next, we develop an alternating-direction-implicit (ADI) preconditioner for Atriκ . We consider precondi-
tioners of the form:

Atri
−1

κ ≈ P̃ tri
−1

ADI = Φ+P̃ tri
−1

ADI†Φ
+T (52)

where P̃ tri
−1

ADI† is an ADI preconditioner for Ãtriκ† . First, consider a classical ADI preconditioner for Ãtriκ† as
given in (50). We introduce a pseudo-time τ and write the ADI preconditioner as:

Ãtri
−1

κ† ≈ P̃ tri
−1

ADI†1
= τ(I ⊗ τD̃2 + I)−1(τG−1

1†
D̃1† + I ⊗ I)−1(G1† ⊗ I)−1 (|xξ|(M1† ⊗M2))

−1

= τ(I ⊗ τD̃2 + I)−1(τD̃1† +G1† ⊗ I)−1 (|xξ|(M1† ⊗M2))
−1

(53)

It can be easily shown that the spectral radius of the operator (P̃ tri
−1

ADI†Ã
tri
κ† − I) is bounded by 1 for all

positive τ ,16 while the minimum spectral radius is obtained with a pseudo-time such that the element CFL
number CFLκ = N |ā|τ = O(1). Unfortunately, these results do not translate directly to the spectral radius

of (P̃ tri
−1

ADI Ã
tri
κ − I) and we cannot bound this operator for all pseudo-time. Instead, we consider the limit as

the pseudo-time goes to zero. For the quadrilateral, the ADI preconditioner recovers a scaled mass-matrix
preconditioner in this limit. We wish our ADI-preconditioner for the triangular element to have the same
feature. To this end we consider a second ADI preconditioner for Ãtriκ† given by:

P̃ tri
−1

ADI2 = τ(I ⊗ τD̃2 + I)−1(τD̃1† + I ⊗ I)−1 (|xξ|(M1† ⊗M2))
−1

(54)

We note that the only difference between P̃ tri
−1

ADI†1
and P̃ tri

−1

ADI2
given in (53) and (54) respectively is the scaling

of the pseudo-time term in the η1 direction. In particular, G1† in (53) may be viewed as reducing the pseudo-
time in the vicinity of the collapsed edge. Finally, we write our ADI preconditioner P̃ADI† as a combination

of P̃ tri
−1

ADI†1
and P̃ tri

−1

ADI2

P̃ tri
−1

ADI† = τ(I ⊗ τD̃2 + I)−1(τD̃1† + (γG1† + (1− γ)I)⊗ I)−1 (|xξ|(M1† ⊗M2))
−1

(55)

We note that the scaling of the pseudo-time in the η1 direction is given by a linear combination governed by
a single parameter 0 ≤ γ ≤ 1. Based on numerical experiments we set γ as γ = 1

4

√
N2(ā2

1 + ā2
2)τ2, which

generally gives satisfactory performance.
We now examine the performance of the proposed ADI preconditioner to solve the scalar advection

problem on the triangle. We set τ such that CFLκ = N |ā|τ = 1 and compute the spectral radius of

the preconditioned operator (P̃ tri
−1

ADI Ã
tri
κ − I) as a function of the angle of the flow relative to a reference

equilateral triangle.
As can be seen from Figure 6 the spectral radius of the proposed preconditioner appears bounded by 1.

Additionally, the spectral radius grows slowly as a function of solution order N , suggesting that the proposed
preconditioner may be used to eliminate the stiffness associated with high order.

11 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

3
0 90 180 270 360

;
(P

F
M

D
2

-1
A

-I
)

0

0.2

0.4

0.6

0.8

1

1.2
N = 2
N = 4
N = 8
N = 12
N = 16

Figure 6. Spectral radius of
(
P tri

−1

ADI Atriκ − I
)

We now describe the extension of our ADI preconditioner to prisms, pyramid and tetrahedra. As with
the triangle, we may form tensor product systems for the prism, pyramid and tetrahedra given by:

Ãprism
κ†

= |xξ|(M1† ⊗M2 ⊗M3)
(

(D̃1† ⊗ I ⊗ I) + (G1† ⊗ D̃2 ⊗ I) + (I ⊗ I ⊗ D̃3)
)

Ãpyramid
κ†

= |xξ|(M1‡ ⊗M2 ⊗M3)
(

(D̃1‡ ⊗ I ⊗ I) + (G1‡ ⊗ D̃2 ⊗ I) + (G1‡ ⊗ I ⊗ D̃3)
)

Ãtetκ† = |xξ|(M1‡ ⊗M2† ⊗M3)
(

(D̃1‡ ⊗ I ⊗ I) + (G1‡ ⊗ D̃2† ⊗ I) + (G1‡ ⊗G2† ⊗ D̃3)
)

where:

M1‡ [m,n] =

∫ 1

η1=−1

(
1−ξ1

2

)2

w1v1 (56)

D1‡ [m,n] = −
∫
η1

((
1−η1

2

)2
ā1w1,η1v1

)
+
[(

1−η1
2

)2
ā+

1 w1v1

]
η1=−1

(57)

where M1‡ and D1‡ are evaluated using a Gauss-Jacobi quadrature rule with α = 2. The corresponding ADI
preconditioners are given by:

P̃ prism
−1

κ†
= τ(I ⊗ I ⊗ τD̃3 + I)−1(I ⊗ τD̃2 + I ⊗ I)−1 ×

(τD̃1† + (γG1† + (1− γ)I)⊗ I ⊗ I)−1 (|xξ|(M1† ⊗M2 ⊗M3))
−1

(58)

P̃ pyramid
−1

κ†
= τ(I ⊗ I ⊗ τD̃3 + I)−1(I ⊗ τD̃2 + I ⊗ I)−1 ×

(τD̃1‡ + (γG1‡ + (1− γ)I)⊗ I ⊗ I)−1 (|xξ|(M1‡ ⊗M2 ⊗M3))
−1

(59)

P̃ tet
−1

κ† = τ(I ⊗ I ⊗ τD̃3 + I)−1(I ⊗ τD̃2† + (γ2G1† + (1− γ2)I)⊗ I)−1 ×
(τD̃1‡ + (γG1‡ + (1− γ)I)⊗ I ⊗ I)−1 (|xξ|(M1‡ ⊗M2 ⊗M3))

−1
(60)

As with the triangle, γ scales the pseudo-time contribution in the η1 and η2 directions respectively. We set

γ =
√

1
4N

2(ā2
1 + ā2

2)τ2 for the prism, γ =
√

1
4N

2(ā2
1 + ā2

2 + ā2
3)τ2 for the pyramid and tetrahedra.

We now apply our ADI preconditioner to solve the scalar advection-diffusion problem, (27), in a unit box
domain (Ω = [0, 1]3). A forcing function is applied so that the exact solution is given by:

v = sin(πx) sin(πy) sin(πz) (61)

We solve the scalar advection problem using a velocity with unit magnitude and consider all flow angles
0 ≤ θ ≤ 180◦ and 0 ≤ φ ≤ 360◦, in 15◦ increments. The domain is partitioned uniformly to form a mesh
with hexahedral elements, while each hexahedral element is then partitioned into either two prisms, six
pyramids or six tetrahedra to form meshes of each element type. We solve the scalar advection problem
using 2nd-, 4th-, 8th- and 16th- order spatial discretizations with approximately 643 degrees of freedom. We

12 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

evaluate the performance of our preconditioner in terms of the number of GMRES iterations required to
converge the residual to 10−12. Figure 7 reports the mean number of GMRES iterations over all flow angles
using a mass-matrix preconditioner and the ADI preconditioner. Using the mass-matrix preconditioner, the
number of iterations grows linearly with solution order, N , for a fixed number of degrees of freedom. The ADI
preconditioner is able to reduce this stiffness, such that the number of iterations is roughly independent of
solution order. Figure 7 also presents the median number of iterations using the mass-matrix preconditioner
relative to the ADI preconditioner. The relative improvement is greatest for the hexadral mesh, while
the relative improvement is much smaller using prisms, pyramids and tetrahedra. As a result, using a
hexahedral mesh is approximately 2, 3.5 and 4 times more efficient than the corresponding prism, pyramid
and tetrahedral meshes using similar numbers of degrees of freedom.

N
2 4 8 16

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

3000

3500
Hex
Prism
Pyramid
Tet

(a) Mass-Matrix Preconditioner

N
2 4 8 16

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

3000

3500
Hex
Prism
Pyramid
Tet

(b) ADI Preconditioner

N
2 4 8 16

R
el

at
iv

e
N

um
be

r
of

 It
er

at
io

ns

0

1

2

3

4

5

6

7

8
Hex
Prism
Pyramid
Tet

(c) Relative Performance

Figure 7. Average number of GMRES iterations for scalar advection problem using mass-matrix and ADI precondi-
tioners

IV. Preconditioning: Compressible Navier-Stokes equations

We now briefly discuss the extension of our ADI preconditioner to the unsteady compressible Euler
equations. The full description of our diagonalized-ADI preconditioner for hexahedral elements appears
in our previous papers.6,8 As in our previous papers we consider the constant coefficient linearized Euler
equations:

A0v,t + Ā∇v = 0. (62)

Applying the discontinuous-Galerkin discretization, using the Roe flux18 we obtain an elemental block Ja-
cobian which corresponds to the following operator:

r(w|κ,v|κ) = −
∫
In

∫
κ

(w,tA0v +∇w · Āv) +

∫
In

∫
∂κ

wA+
nv +

∫
κ

w(tn+1
−)A0v(tn+1

−). (63)

As in the scalar case we will develop preconditioners based on applying an ADI scheme on the tensor-product
space corresponding to the reference cube and then project the solution back to the reference prism, pyramid
or tetrahedron. Again, we write the elemental block Jacobian in the following form:

2

∆t|xξ|
r(w|κ,v|κ) = +

∫
τ

∫
η3

∫
η2

(
−
∫
η1

|ξη|w,η1Ã1v +
[
|ξη|wÃ

+

1 v
]η1=1

η1=−1

)
+

∫
τ

∫
η3

∫
η1

(
−
∫
η2

|ξη|w,η2Ã2v +
[
|ξη|wÃ

+

2 v
]η2=1

η2=−1

)
+

∫
τ

∫
η2

∫
η1

(
−
∫
η3

|ξη|w,η3Ã3v +
[
|ξη|wÃ

+

3 v
]η3=1

η3=−1

)
+

∫
η3

∫
η2

∫
η1

(
−
∫
τ

|ξη|w,τ Ã0v +
[
|ξη|wÃ0v

]τ=1
)
, (64)

where Ãi = ηi,xjAj ,

Ã
+

i =

{
1
2 (Ãi + |Ãi|) at ηi = 1
1
2 (Ãi − |Ãi|) at ηi = −1

}
, (65)

13 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

while Ã0 = 2
∆tA0. We again recognize that each line on the right-hand side of (64) corresponds to the

discretization of a one-dimensional problem along an axis of the reference cube. However, unlike the scalar
case these one-dimensional problems correspond to a 5 × 5 hyperbolic system. Following Pulliam and
Chaussee19 we diagonalized the flux Jacobians, Ãi = RiΛ̃iR

T
i . Here Ri are the eigenvectors, while Λ̃i is

the matrix of eigenvalues of Ai. We also note that A0 = R0R
T
0 = R1R

T
1 = R2R

T
2 = R3R

T
3 .20 Thus we

can write:

2

∆t|xξ|
r(w|κ,v|κ) = +

∫
τ

∫
η3

∫
η2

(
−
∫
η1

|ξη|w,η1R1Λ̃1R
T
1 v +

[
|ξη|wR1Λ̃

+

1 R
T
1 v
]η1=1

η1=−1

)
+

∫
τ

∫
η3

∫
η1

(
−
∫
η2

|ξη|w,η2R2Λ̃2R
T
2 v +

[
|ξη|wR2Λ̃

+

2 R
T
2 v
]η2=1

η2=−1

)
+

∫
τ

∫
η2

∫
η1

(
−
∫
η3

|ξη|w,η3R3Λ̃3R
T
3 v +

[
|ξη|wR3Λ̃

+

3 R
T
3 v
]η3=1

η3=−1

)
+

∫
η3

∫
η2

∫
η1

(
−
∫
τ

|ξη|w,τR0R
T
0 v +

[
|ξη|wR0R

T
0 v
]τ=1

)
, (66)

Assuming that the eigenvectors of the flux Jacobian do not vary spatially we now recover 5 independent
scalar advection problems in each coordinate direction. Following our derivation for the hexahedron,6,8 we
define our diagonalized-ADI scheme as given by the following sequence of steps:

1. Multiply by the inverse of the space-time element mass matrix

2. Transform to characteristic variables in the ξ1-direction

3. Solve one-dimensional scalar systems along lines in the ξ1-direction

4. Transform to characteristic variables in the ξ2-direction

5. Solve one-dimensional scalar systems along lines in the ξ2-direction

6. Transform to characteristic variables in the ξ3-direction

7. Solve one-dimensional scalar systems along lines in the ξ3-direction

8. Solve one-dimensional scalar systems along lines in the τ -direction

9. Transform back to entropy variables

In steps 2, 4, 6 and 9 variable transformations are performed locally at each quadrature point using the point-
wise values for the state and geometry information. Similarly, the scalar systems solved in 3, 5, 7 and 8
correspond to variable-coefficient scalar-advection problems with advection velocity given by the eigenvalues
averaged in a direction normal to the η1-, η2-, η3- and τ - directions, respectively. The exact form of the scalar
systems solved are similar to those for the scalar case and are included in the Appendix for completeness.

We now evaluate the performance of the ADI preconditioners to solve the compressible Navier-Stokes
equations. We solve the Taylor-Green vortex problem described in detail in Section V.B. We solve the Taylor-
Green vortex problem at a Reynolds number of Re = 1600 using our space-time discontinuous Galerkin
method using an 8th-order spatial and a 4th-order temporal discretization. As in the case of the scalar
advection-diffusion problem we use meshes composed of hexahedra, prisms, pyramids and tetrahedra using
approximately 643 degrees of freedom. Figure 8 presents the average number of GMRES iterations required
to converge the space-time residual to 10−14 using both mass-matrix and diagonalized-ADI preconditioners.

We present the number of GMRES iterations as a function of the space-time CFL number, CFL = |c|Nt∆t
Nh for

a fixed time period. For the hexahedral mesh, the diagonalized-ADI preconditioner results in significantly
fewer GMRES iterations, with increasing benefit for larger CFL. For meshes with prisms, pyramids and
tetrahedra the performance of the diagonalized-ADI preconditioner is reduced. However, the preconditioner
provides some improvement over the performance of the mass-matrix preconditioner.

14 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

CFL
1 2 4 8 16

Ite
ra

tio
ns

0

2000

4000

6000

8000

10000
Hex
Prism
Pyramid
Tet

(a) Mass-Matrix Preconditioner

CFL
1 2 4 8 16

Ite
ra

tio
ns

0

2000

4000

6000

8000

10000
Hex
Prism
Pyramid
Tet

(b) ADI Preconditioner

CFL
1 2 4 8 16

R
el

at
iv

e
N

um
be

r
of

 It
er

at
io

ns

0

2

4

6

8
Hex
Prism
Pyramid
Tet

(c) Relative Performance

Figure 8. Average number of GMRES iterations for Taylor-Green vortex problem solved using 8th-order spatial and
4th-order temporal with mass-matrix and diagonalized-ADI preconditioners.

V. Numerical Results

V.A. Method of Manufactured Solutions

First, we verify the implementation of our numerical scheme using the method of manufactured solutions.
We solve the steady compressible Navier-Stokes equations with a forcing term such that the exact solution
is sinusoidal in the density, pressure and each component of the velocity vector:

ρ(x, y, z) = ρ0 + ρx cos(aρxπx) + ρy cos(aρyπy) + ρz cos(aρzπz) (67)

u(x, y, z) = u0 + ux cos(auxπx) + uy cos(auyπy) + uz cos(auzπz) (68)

v(x, y, z) = v0 + vx cos(avxπx) + vy cos(avyπy) + vz cos(avzπz) (69)

w(x, y, z) = w0 + wx cos(awxπx) + wy cos(awyπy) + wz cos(awzπz) (70)

p(x, y, z) = p0 + px cos(apxπx) + py cos(apyπy) + pz cos(apzπz) (71)

The forcing term and exact solutions were provided using the MASA library.21 A unit box domain (Ω =
[0, 1]3) is partitioned uniformly to form a mesh with hexahedral elements. Each hexahedral element is then
partitioned into either two prisms, six pyramids or six tetrahedra to form meshes of each element type.
Figure 9 presents the convergence of the L2 error in the state and gradient as a function of the mesh size

h = DOF
−1/3
hex . As expected, the L2 error in the state converges at the formal order of accuracy, while the

L2 error in the gradient converges at a rate one order less.
The number of degrees of freedom for the corresponding prism, pyramid and tetrahedral meshes relative

to the hexahedral mesh are:

DOFprism = N2(N+1)
N3 (72)

DOFpyramid = N(N+1)(2N+1)
N3 (73)

DOFtet = N(N+1)(N+2)
N3 (74)

At 2nd-order the hexahedral mesh is more efficient than the other mesh types since achieving the same error
level requires equivalent prism, pyramid and tetrahedral meshes with roughly 3/2, 15/4 and 3 times as many
degrees of freedom. For large polynomial orders the differences between the number of degrees of freedom for
each mesh type decreases such that the same error level is achieved for all element types at similar number
of degrees of freedom. The exception is the pyramid mesh which has an error level roughly half of the other
mesh types. We note that our pyramid mesh is obtained by adding an additional node in the center of each
hexahedron and splitting the hexahedron into 6 pyramids, allowing each hexahedra to be split independently.
Alternatively, each hexahedron may be split into 3 pyramids, resulting in a mesh with half as many degrees
of freedom. We suspect on such a mesh the results from the pyramid would fall directly on top of the other
mesh types as well.

V.B. Taylor-Green Vortex

We now apply our higher-order discontinuous Galerkin method for the simulation of turbulent compressible
flows. The Taylor-Green vortex evolution is used as a model problem for turbulent flow as it involves only

15 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

h
10 -2 10 -1

||v
-v

* ||
L

2

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

2

4

8

16 N = 2
N = 4
N = 8
N = 16

(a) State Error

h
10 -2 10 -1

||
r

 v
-
r

 v
* ||

L
2

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

1

3

7

15
N = 2
N = 4
N = 8
N = 16

(b) Gradient Error

Figure 9. Error versus mesh size for method of manufactured solution. (×-hex, �-prism, ©-pyramid, ♦-tet)

periodic boundary conditions, no forcing and a simple initial condition. The flow is solved on an isotropic
domain, which spans [0, 2πL] in each coordinate direction. The initial conditions are given by:

u = V0 sin(x/L) cos(y/L) cos(z/L) (75)

v = −V0 cos(x/L) sin(y/L) cos(z/L) (76)

w = 0 (77)

p = ρ0V
2
0

[
1

γM2
0

+
1

16
(cos(2x/L) + cos(2y/L)) (cos(2z/L) + 2))

]
(78)

where u, v and w are the components of the velocity in the x-, y- and z-directions, p is the pressure and ρ
is the density. The Taylor-Green vortex flow is simulated using the compressible Navier-Stokes equations at
Mach number M0 = 0.1. The flow is initialized to be isothermal (pρ = p0

ρ0
= RT0). Simulations are performed

at a Reynolds numbers Re = ρ0V0L
µ = 1600.

Figure 10. Iso-contours of vorticity magnitude at the instant of peak dissipation for the Taylor-Green
vortex evolution at M = 0.1, Re = 1,600, computed using conservative variables, with 2563 degrees of
freedom.

Starting from the simple initial condition, the flow becomes turbulent through repeated vortex stretching
leading to progressively smaller eddies, which are then dissipated to heat through the action of molecular
viscosity. With increasing Reynolds number, progressively smaller structures appear. Figure 10 shows the
iso-contours of vorticity at the instant of peak dissipation from a 16th-order solution at Re = 1,600.

16 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

For each simulation the temporal evolution of the kinetic energy

Ek =
1

Ω

∫
Ω

1
2ρV · V dΩ (79)

is monitored. The evolution of the kinetic energy dissipation rate ε = −dEk/dt was computed based on the
data at the space-time quadrature points. We assess the quality of our numerical solutions by computing in-
dividual terms in the kinetic energy evolution equation. For compressible flow, the kinetic energy dissipation
rate is given by the sum of three contributions ε = ε1 + ε2 + ε3 = −dEk/dt:

ε1 =
1

Ω

∫
Ω

2µS : SdΩ (80)

ε2 =
1

Ω

∫
Ω

λ(∇ · V)2dΩ (81)

ε3 = − 1

Ω

∫
Ω

p(∇ · V)dΩ (82)

where S = 1
2 (∇V +∇V T) is the strain rate tensor. Since the flow is nearly incompressible, we expect the

dissipation due to the bulk viscosity, ε2, and the pressure-dilatation term, ε3, to be small. The kinetic energy
dissipation rate is then approximately equal to ε ≈ ε1. However, for the compressible simulation this does
not hold exactly.7

We perform simulations of the Taylor-Green vortex problem using meshes with hexahedra, prisms, pyra-
mids and tetrahedra. We perform a mesh refinement study using our space-time DG method with 2nd- 4th-
and 8th-order polynomials in space and 4th-order in time using 48, 64, 96 and 128 degrees of freedom in each
coordinate direction. In Figure 11 we present the resolved viscous dissipation, ε1, for different polynomial
orders and element shapes. Reference data computed from an incompressible simulation using a spectral
code on a 5123 grid22 is also presented. For 2nd-order schemes, less than half of the kinetic energy dissi-
pation is resolved even on the finest grid considered. With increasing solution order, the results relative to
the spectral data are significantly improved. At 8th-order the coarsest mesh considered resolves more of the
viscous dissipation than using the finest mesh at 2nd-order.

In order to quantify these observations we evaluate the error in the computed kinetic energy dissipation
rate:

Error =

∣∣∣∣∣Ek(T)− Ek(0) +

∫ T

0

(ε1 + ε2 + ε3)dt

∣∣∣∣∣ (83)

Figure 12 presents the convergence of the error for 2nd-, 4th- and 8th- order spatial discretizations using
meshes with hexahedra, prisms, pyramids and tetrahedra. For this test case we do not recover the formal
convergence rate of our scheme, since at these mesh resolutions we are not in the asymptotic regime. However,
even at these coarse mesh resolutions there is significant benefit to using the higher-order scheme as the 8th-
order scheme has an error an order of magnitude less than the corresponding 2nd-order scheme using the
same number of degrees of freedom.

VI. Conclusions

We have extended our higher-order space-time discontinuous-Galerkin finite-element method to general
element types. As with hexahedral meshes the use of a tensor-product formulation is key to achieving
efficiency at high-order. We have presented extensions our ADI preconditioner to prisms, pyramids and
tetrahedra by solving tensor-product problems on the reference cube. Numerical experiments demonstrated
that the proposed ADI preconditioner is able to reduce the stiffness associated with high-order for scalar
advection problems. The ADI preconditioner for the scalar-advection equations was then generalized to solve
the compressible Euler and Navier-Stokes equations. Numerical results demonstrate the performance benefit
of the proposed diagonalized-ADI relative to a simple mass-matrix preconditioner.

We have verified the formal accuracy of our numerical scheme up to 16th-order. Finally, we have applied
our numerical scheme to simulate turbulent compressible flows. Numerical results demonstrate the efficiency
of higher-order methods relative to a 2nd-order scheme.

17 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(a) N = 2, Hex

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(b) N = 4, Hex

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(c) N = 8, Hex

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(d) N = 2, Prism

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(e) N = 4, Prism

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(f) N = 8, Prism

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(g) N = 2, Pyramid

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(h) N = 4, Pyramid

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(i) N = 8, Pyramid

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(j) N = 2, Tet

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(k) N = 4, Tet

T
0 5 10 15 20

0 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

48 3

64 3

96 3

128 3

Spectral

(l) N = 8, Tet

Figure 11. Evolution of the resolved viscous dissipation (ε1) for the Taylor-Green vortex evolution at
M = 0.1, Re = 1,600

18 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

h
10 -2

E
rr

or

10 -3

10 -2

10 -1

N = 2
N = 4
N = 8

Figure 12. Error in kinetic energy evolution for Taylor-Green vortex problem at M = 0.1, Re = 1,600.
(×-hex, �-prism, ©-pyramid, ♦-tet)

References

1Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K.,
Huynh, H., Kroll, N., May, G., Persson, P.-O., van Leer, B., and Visbal, M., “High-Order CFD Methods: Current Status and
Perspective,” International Journal for Numerical Methods in Fluids, Vol. 72, 2013, pp. 811–845.

2Bassi, F. and Rebay, S., “GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations,” Discon-
tinuous Galerkin Methods: Theory, Computation and Applications, edited by K. Cockburn and Shu, Springer, Berlin, 2000,
pp. 197–208.

3Fidkowski, K. J., Oliver, T. A., Lu, J., and Darmofal, D. L., “p-Multigrid solution of high-order discontiunous Galerkin
discretizations of the compressible Navier-Stokes equations,” Journal of Computational Physics, Vol. 207, No. 1, 2005, pp. 92–
113.

4Persson, P.-O. and Peraire, J., “An efficient low memory implicit DG algorithm for time dependent problems,” AIAA
2006-0113, 2006.

5Diosady, L. T. and Darmofal, D. L., “Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes
equations,” Journal of Computational Physics, Vol. 228, 2009, pp. 3917–3935.

6Diosady, L. T. and Murman, S. M., “Design of a variational multiscale method for turbulent compressible flows,” AIAA
Paper 2013-2870, 2013.

7Diosady, L. T. and Murman, S. M., “DNS of flows over periodic hills using a discontinuous Galerkin spectral element
method,” AIAA Paper 2014-2784, 2014.

8Diosady, L. T. and Murman, S. M., “Tensor-Product Preconditioners for Higher-order Space-Time Discontinuous Galerkin
Methods,” 2014, under review.

9Diosady, L. T. and Murman, S. M., “Higher-Order Methods for Compressible Turbulent Flows Using Entropy Variables,”
AIAA Paper 2015-0294, 2015.

10Karniadakis, G. and Sherwin, S., Spectral/hp element methods for CFD , Oxford University Press, New York, NY, 1999.
11Kirby, R., Warburton, T., Lomtev, I., and Karniadakis, G., “A discontinuous Galerkin spectral/hp method on hybrid

grids,” Applied Numerical Mathematics, Vol. 33, No. 14, 2000, pp. 393 – 405.
12Kirby, R. M. and Karniadakis, G. E., “De-aliasing on non-uniform grids: algorithms and applications,” Journal of

Computational Physics, Vol. 191, 2003, pp. 249–264.
13Hughes, T. J. R., Franca, L., and Mallet, M., “A new finite element formulation for computational fluid dynamics: I

Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics,” Vol. 54, 1986,
pp. 223–234.

14Ismail, F. and Roe, P. L., “Affordable, Entropy-consistent Euler flux functions II: entropy production at shocks,” J.
Comput. Phys., Vol. 228, No. 15, Aug. 2009, pp. 5410–5436.

15Vos, P., Sherwin, S., and Kirby, R., “From h to p Efficiently: Implementing finite and spectral/hp element discretizations
to achieve optimal performance at low and high order approximations.” Journal of Computational Physics, Vol. 229, No. 13,
2010, pp. 5161–5181.

16Beam, R. and Warming, R., “An Implicit Factored Scheme for the Compressible Navier-Stokes Equations,” AIAA
Journal , Vol. 16, No. 4, 1978, pp. 393 – 402.

19 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

17Lynch, R. E., Rice, J. R., and Thomas, D. H., “Direct solution of partial difference equations by tensor product methods,”
Numerische Mathematik , Vol. 6, No. 1, 1964, pp. 185–199.

18Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of Computational
Physics, Vol. 43, No. 2, 1981, pp. 357–372.

19Pulliam, T. and Chaussee, D., “A Diagonal Form of an Implicit Approximate-Factorization Algorithm,” Journal of
Computational Physics, Vol. 39, 1981, pp. 347–363.

20Barth, T. J., “Numerical Methods for Gasdynamic Systems on Unstructured Meshes,” An Introduction to Recent Devel-
opments in Theory and Numerics for Conservation Laws, edited by D. Kroner, M. Olhberger, and C. Rohde, Springer-Verlag,
1999, pp. 195 – 282.

21Malaya, N., Estacio-Hiroms, K. C., Stogner, R. H., Schulz, K. W., Bauman, P. T., and Carey, G. F., “MASA: A Library
for Verification Using Manufactured and Analytical Solutions,” Engineering with Computers, 2012.

22van Ress, W., Leonard, A., Pullin, D., and Koumoutsakos, P., “A comparison of vortex and pseudo-spectral methods
for the simulation of periodic vortical flows at high Reynolds number,” Journal of Computational Physics, Vol. 230, 2011,
pp. 2794–2805.

Appendix

For completeness we give the form of the scalar equations solved in each direction for the diagonalized-
ADI scheme. Assuming that the eigenvectors Ri do not vary spatially, the elemental block Jacobian for the
hex, prism, pyramid and tet may be written as:

Ãhexκ† ≈ |xξ|(M1 ⊗M2 ⊗M3 ⊗M0 ⊗ I)
(

(I ⊗ I ⊗ I ⊗ D̃0 ⊗R0Λ0R
T
0) + (D̃1 ⊗ I ⊗ I ⊗ I ⊗R1Λ1R

T
1)

+(I ⊗ D̃2 ⊗ I ⊗ I ⊗R2Λ2R
T
2) + (I ⊗ I ⊗ D̃3 ⊗R3I ⊗ Λ3R

T
3)
)

Ãprism
κ†

≈ |xξ|(M1† ⊗M2 ⊗M3 ⊗M0 ⊗ I)
(

(I ⊗ I ⊗ I ⊗ D̃0 ⊗R0Λ0R
T
0) + (D̃1† ⊗ I ⊗ I ⊗ I ⊗R1Λ1R

T
1)

+(G1† ⊗ D̃2 ⊗ I ⊗ I ⊗R2Λ2R
T
2) + (I ⊗ I ⊗ D̃3 ⊗ I ⊗R3Λ3R

T
3)
)

Ãpyramid
κ†

≈ |xξ|(M1‡ ⊗M2 ⊗M3 ⊗M0 ⊗ I)
(

(I ⊗ I ⊗ I ⊗ D̃0 ⊗R0Λ0R
T
0) + (D̃1‡ ⊗ I ⊗ I ⊗ I ⊗R1Λ1R

T
1)

+(G1‡ ⊗ D̃2 ⊗ I ⊗ I ⊗R2Λ2R
T
2) + (G1‡ ⊗ I ⊗ D̃3 ⊗ I ⊗R3Λ3R

T
3)
)

Ãtetκ† ≈ |xξ|(M1‡ ⊗M2† ⊗M3 ⊗M0 ⊗ I)
(

(I ⊗ I ⊗ I ⊗ D̃0 ⊗R0Λ0R
T
0) + (D̃1‡ ⊗ I ⊗ I ⊗ I ⊗R1Λ1R

T
1)

+(G1‡ ⊗ D̃2† ⊗ I ⊗ I ⊗R2Λ2R
T
2) + (G1‡ ⊗G2 ⊗ D̃3 ⊗ I ⊗R3Λ3R

T
3)
)

(84)

where (D̃i ⊗ Λi) denotes the block diagonal matrix corresponding to the scalar advection problems in each
coordinate direction such that (84) is the discrete set of equations corresponding to (64). We then define
D̃∗i , D̃∗i† and D̃∗i‡ such that:

(τD̃∗i ⊗ Λi) ≡ (τD̃i ⊗ Λi) + (I ⊗ I) (85)

(τD̃∗i† ⊗ Λi) ≡ (τD̃i ⊗ Λi) + (I ⊗ γGi† + (1− γ)I) (86)

(τD̃∗i‡ ⊗ Λi) ≡ (τD̃i ⊗ Λi) + (I ⊗ γGi‡ + (1− γ)I) (87)

20 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

We write the corresponding diagonalized ADI preconditioners as:

P̃hex
−1

κ† = τ(I ⊗ I ⊗ I ⊗ I ⊗R−T3)(I ⊗ I ⊗ I ⊗ τD̃∗0 ⊗ Λ̃0)−1(I ⊗ I ⊗ τD̃∗3 ⊗ I ⊗ Λ̃3)−1

(I ⊗ I ⊗ I ⊗ I ⊗R−1
3 R2)(I ⊗ τD̃∗2 ⊗ I ⊗ I ⊗ Λ̃2)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1

2 R1)

(τD̃∗1 ⊗ I ⊗ I ⊗ I ⊗ Λ̃1)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1
1)|xξ|(M1 ⊗M2 ⊗M3 ⊗M0 ⊗ I)−1

P̃ prism
−1

κ†
= τ(I ⊗ I ⊗ I ⊗ I ⊗R−T3)(I ⊗ I ⊗ I ⊗ τD̃∗0 ⊗ Λ̃0)−1(I ⊗ I ⊗ τD̃∗3 ⊗ I ⊗ Λ̃3)−1

(I ⊗ I ⊗ I ⊗ I ⊗R−1
3 R2)(I ⊗ τD̃∗2 ⊗ I ⊗ I ⊗ Λ̃2)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1

2 R1)

(τD̃∗1† ⊗ I ⊗ I ⊗ I ⊗ Λ̃1)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1
1)|xξ|(M1† ⊗M2 ⊗M3 ⊗M0 ⊗ I)−1

P̃ pyramid
−1

κ†
= τ(I ⊗ I ⊗ I ⊗ I ⊗R−T3)(I ⊗ I ⊗ I ⊗ τD̃∗0 ⊗ Λ̃0)−1(I ⊗ I ⊗ τD̃∗3 ⊗ I ⊗ Λ̃3)−1

(I ⊗ I ⊗ I ⊗ I ⊗R−1
3 R2)(I ⊗ τD̃∗2 ⊗ I ⊗ I ⊗ Λ̃2)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1

2 R1)

(τD̃∗1‡ ⊗ I ⊗ I ⊗ I ⊗ Λ̃1)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1
1)|xξ|(M1‡ ⊗M2 ⊗M3 ⊗M0 ⊗ I)−1

P̃ tet
−1

κ† = τ(I ⊗ I ⊗ I ⊗ I ⊗R−T3)(I ⊗ I ⊗ I ⊗ τD̃∗0 ⊗ Λ̃0)−1(I ⊗ I ⊗ τD̃∗3 ⊗ I ⊗ Λ̃3)−1

(I ⊗ I ⊗ I ⊗ I ⊗R−1
3 R2)(I ⊗ τD̃∗2† ⊗ I ⊗ I ⊗ Λ̃2)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1

2 R1)

(τD̃∗1‡ ⊗ I ⊗ I ⊗ I ⊗ Λ̃1)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1
1)|xξ|(M1‡ ⊗M2† ⊗M3 ⊗M0 ⊗ I)−1

(88)

The application ofR−T3 , R−1
3 R2, R−1

2 R1, andR−1
1 correspond to transformations to and from characteristic

variables, which are performed locally at each quadrature point. Additionally, we note that R−1
3 R2, R−1

2 R1

depend only upon local geometry information.19 Since, in general, the eigenvalues Λi and eigenvectors Ri

vary spatially, the application of the diagonalized-ADI preconditioner cannot be written in the simplified
form given in (88). Instead we define our diagonalized-ADI scheme as given by the sequence of steps
described in Section IV. Each one-dimensional system then corresponds to a scalar advection problem with
advection-velocity given by an eigenvalue averaged in the directions normal to η1, η2, η3 and τ , respectively.

21 of 21

American Institute of Aeronautics and Astronautics Paper 2015-3044

